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The existence of steady solitary waves on deep water was suggested on physical 
grounds by Longuet-Higgins (1988) and later confirmed by numerical computation 
(Longuet-Higgins 1989 ; Vanden-Broeck & Dias 1992). Their numerical methods are 
accurate only for waves of finite amplitude. In this paper we show that solitary 
capillary-gravity waves of small amplitude are in fact a special case of envelope 
solitons, namely those having a carrier wave of length 27c(T/pg)i (g = gravity, T = 
surface tension, p = density). The dispersion relation c2 = 2(1 -%-.fa,) between the 
speed c and the maximum surface slope amax is derived from the nonlinear Schrodinger 
equation for deep-water solitons (Djordjevik & Redekopp 1977) and is found to 
provide a good asymptote for the numerical calculations. 

1. Introduction 
The theoretical existence of a steady capillary-gravity wave of solitary type on deep 

water was first suggested on physical grounds by Longuet-Higgins (1988) and was 
confirmed by accurate numerical computation in a second paper (Longuet-Higgins 
1989, to be referred to as LH2). Experimentally, waves with a profile very similar to 
those predicted have been observed in laboratory experiments by Zhang & Cox (1993). 
Meanwhile, Vanden-Broeck & Dias (1992, to be referred to as VBD) have published 
numerical calculations of both forced and free capillary-gravity waves, using a 
different numerical technique. They have verified the existence of the ‘depression’ 
solitary waves found in LH2, which have a wave trough in the plane of symmetry, and 
have found also ‘elevation’ solitary waves which have a crest in the plane of symmetry. 
It is to be noted that in both types of wave the total added mass must be zero, by a 
theorem proved in LH2. This of course contrasts with the situation in shallow water, 
or in any finite depth. 

The surface profiles calculated in VBD suggest that as the amplitude of the solitary 
waves is decreased, so the waves spread out horizontally and develop more and more 
undulations. In this respect they come to resemble ‘envelope solitons’ on deep water. 
The theory of deep-water solitons, originally developed for pure gravity waves by 
Benny & Newel1 (1 967), Hasimoto & Ono (1 972) and Zakharov & Shabat (1 972) was 
first discussed for capillary-gravity waves by Djordjevik & Redekopp (1977) and later 
by Ablowitz & Segur (1979). In general, these solutions are time-dependent. A carrier 
wave, of slowly varying amplitude and phase, progresses through the group with its 
own phase speed, while the wave envelope, described by a complex amplitude function, 
progresses unchanged with the corresponding group velocity. For pure gravity waves 
in deep water, the two velocities are always unequal. However, for general 
capillary-gravity waves there is one special wavenumber at which the phase speed 
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equals the group speed, according to linear theory (Lamb 1932, Chap. 9, and figure 3 
below). For waves in the neighbourhood of this wavenumber one suspects the existence 
of steady envelope solitons. 

The theory of envelope solitons given by Djordjevik & Redekopp (1977), for 
example, applies only to solitons of sufficiently small amplitude. The purpose of this 
note is to enquire whether the particular steady solitons of this family are the small- 
amplitude extension of the finite-amplitude solitary waves calculated in LH2 and VBD. 

A crucial test is the amplitude-dispersion relation, that is the relation between the 
phase speed c and the wave amplitude B, or the maximum angle of inclination amax of 
the free surface in the wave motion. This relation was shown in figure 5 and table 1 of 
LH2 for waves in the range 0.926 < c < 1.30. The calculated values have been 
replotted in figures 1 and 2 below. Also plotted are points derived from the 
computations given in VBD. In the same diagrams we show the small-amplitude 
asymptote derived from envelope soliton theory ($3 below), and it will be seen that the 
agreement is convincing. 

In $2 of this paper we give definitions and review briefly the numerical methods and 
results of LH2 and VBD. In $ 3 we use the theory of small-amplitude envelope solitons 
to derive a dispersion relation for solitary waves of small amplitude. A discussion 
follows in $4. The relation of our results to some very recent work by Dias & Iooss 
(1993) is described in an Appendix. 

2. Computations of solitary waves ; definitions 
We consider steady, irrotational waves in an ideal, incompressible fluid of infinite 

depth. If we take axes (Ox,Oy) moving horizontally with the phase-speed c, the flow 
appears independent of the time. We may take the origin 0 in the mean level and the 
y-axis increasing vertically upwards. If $ and $ denote the velocity potential and 
stream function, then $ --f cx at infinity. 

The velocity components (u, v) can be expressed as 

(2.1) - iv  = c &-ia 

where a is the inclination and c e@ the magnitude of the velocity vector. At infinity, both 
a and p tend to zero. Moreover, since (a + ip) is an analytic function of (u - iv), which 
in turn is an analytic function of (#+i$), it follows that a and p are conjugate 
functions of $ and @ satisfying the Cauchy-Riemann relations. 

In LH2, we took units of mass, length and time so as to make the density p, the 
surface tension T and acceleration due to gravity g satisfy 

p = l ,  T = l ,  g = 1 .  (2.2) 

(2.3) 

The condition of constant pressure on the free surface ($ = 0) is then given by 

sin a + c3 e3@p+ - c2 e2p (a+ /3+ + a#$) = 0 ; 

see LH2, $2. By the transformation 

(2.4) 
Y+ 1 
Y- 1 

w = $+i$ = ib- 

(b a constant) the half-plane $ < 0 was mapped onto the interior of the unit circle 
151 = 1. The function 

was then expanded in a power series in 6, and the coefficients were determined 
G(w) = ( ~ - a ) ~ ( a + i p )  (2.5) 
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FIGURE 1. The phase speed of solitary waves shown as a function of amax, the maximum angle of 
inclination of the free surface. Open circles are from LH2, error bars are from figures 6 and 7 of VBD 
and the dashed curve is the asymptote (3.20). 

numerically by satisfying the boundary condition at points around the circle. The 
solutions converged numerically when 0.9267 < c < 1.3, see figure 1. The lower value 
of c corresponded to waves of limiting amplitude in which the surface enclosed a 
‘bubble of air’. 

In VBD, Vanden-Broeck & Dias adopted a different approach, solving in integro- 
differential system of equations for x and y in terms of $ and $, to be satisfied on 
@ = 0. In general, their formulation included a prescribed pressure distribution el‘($) 
applied at the free surface. In the special case E = 0 they found free solitary waves of 
both depression and elevation. The former confirmed the calculations in LH2 and 
extended them to larger values of c (lower values of a,,,). 

As parameters for the solitary waves, VBD used the difference in level Ay  between 
the free surface in the plane of symmetry x = 0 and at x = co. It was found that Ay was 
positive or negative for waves of depression or elevation, respectively. However, as 
appears from their figure 3, Ay  is not monotonic throughout the range of c. In contrast, 
the parameter a,,, is monotonic and smoothly varying. We can allow amax to be 
positive for waves of depression and negative for waves of elevation. 

Figure 1 shows the phase speed c plotted against a,,,. The open circles are taken 
from table 1 of LH2. The plots with error bars have been measured graphically from 
figures 6 and 7 of VBD, which correspond to waves of elevation and depression 
respectively. The crosses correspond to the limiting waves. Here, the maximum angle of 
inclination is known quite accurately from the limiting form of the ‘bubbles’; see 
Longuet-Higgins (1988). 

Note that VBD choose units of length and time so that T = 1 and c = 1 always. The 
phase speed c in our units can be identified with a-i, where a = gT/pU4 is the 
dimensionless parameter defined in their equation (2.5). 
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FIGURE 2.  The phase speed of solitary waves shown as a function of the Bernoulli constant B 
( B  = minus surface displacement at x = 0). Open circles are from LH2, crosses are from table 1 of 
VBD and the dashed curve is the asymptote (3.20). 

Figure 2 shows c plotted against the Bernoulli constant 

B = g(y -yo) + i(q2 - c2) + TK/P 

defined in LH2, equation (4.1). Note that at x = co, the particle speed q equals c, and 
K vanishes, so that B = g(y,-y,). VBD define A = ( y , - y o ) ( T / p U ) ,  so that we may 
identify B with - Ac2. The circles in figure 2 again correspond to the values in table 1 
of LH2. The crosses correspond to figures 6 and 7 of VBD but are taken from the more 
accurate values given in their table 1. It will be seen that the points corresponding to 
c = 0.927 and c = 1.30 from VBD agree precisely with the corresponding points from 
LH2, as was noted by Vanden-Broeck & Dias, confirming the identity of the depression 
waves. 

For lower values of lamsx) the surface profiles shown in VBD tend to resemble 
envelope solitons, with an increasingly large number of waves in a group. For this 
reason, their method of computation also fails at low amplitudes. Their parameter a 
appears to approach the value t, corresponding to a phase speed c = 4 2 ,  in our units. 
Vanden-Broeck & Dias note that when Ic( < d 2  the linear dispersion relation 

k2-c2k+ 1 = 0 (2.6) 

k = i[c2+i(4-c4)i] (2.7) 

(k  = wavenumber, in our units) has complex roots 

suggesting the existence of waves which decay exponentially towards infinity, as in an 
envelope soliton. However, they do not derive any analytical relation between the 
speed of the soliton and its shape or amplitude. This we shall now do. 
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FIGURE 3. The dispersion relation (3.1) for linear capillary-gravity waves in deep water. The phase- 
velocity c and group velocity c, at a typical point P are given by the gradients of OP and PQ 
respectively. P' corresponds to the minimum phase speed cmax. When P lies at P ,  then the gradients 
of OP and PQ are equal, so c = c,. 

3. Envelope solitons 
The simplest way to write the linear dispersion relation (2.6) is in the form 

w2 = k+k3 ,  (3.1) 
where w and k are the radian frequency and the wavenumber respectively, see figure 3. 
Then the phase speed c and group velocity cg are given by w/k and dwldk respectively, 
and it is obvious from figure 3 that c and cg are equal only at the phase speed minimum, 
which occurs when 

k = l ,  c = c g = 2 / 2 .  (3.2) 
In their theory of envelope solitons, Djordjevik & Redekopp (1977) assume a general 

expression for the surface elevation T,I in a wave train of small slope and slowly varying 
amplitude which we may write in the form 

>, 2EO i ( h z + w t )  r=- 

where E is a small parameter and 
F = k2 T/pg .  

(3.3) 

(3.4) 

The complex amplitude A is a function of the slow variable 5 = s(x+cg t )  and the 
slow time 7 = Et. They show that in deep water, A(( ,7)  must satisfy the nonlinear 
Schrodinger equation 

correct to order e3, where 
iwA, = A A , + , L A ] A ~ ~ A  (3.5) 

g 3 F i 6 f - l  k4 2 ? + f + 8  A = -  
8k f + l  ' p = T ( f + l ) ( 2 T - l ) *  

(3.6) 
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In the special case when k = 1 in our units, then o = 4 2  and f =  1, making 

(3.7) 

(3.8) 

where p and $ are functions of 6 only. Then from the real and imaginary parts of (3.5) 
we get 

(3.9) 

and 2P, 4, -I- P2& = 0 (3.10) 

respectively. On integrating (3.10) we find 

h = l  11 
2,  p, =s. 

The solution of (3.5) is found by writing 

A(<, 7) = p ei(+~7), 

A@,, - P$;) = W Y P  - PP3 

p2$, = constant, (3.11) 

which must vanish since we require p --f 0 and $, bounded as 1fl1 --f 00. Thus $ is a 
constant, and symmetry about 6 = 0 requires that q5 = 0 or 7c. Equation (3.9) can now 
be integrated to give 

hpf = wyp2-;pp4, (3.12) 

the constant of integration again being 0 for a solitary wave. The unique solution of 
(3.12) tending to zero as 1fl1 + 00 is 

p = asechbfl (3.13) 

provided a2 = 2wy/p, b2 = wy/h.  (3.14) 

So from (3.3), (3.8) and (3.13) we have 

9 (3.15) = + ~ ~ i ( s + ~ t - e ' y t )  

where M = eua = 2t(y/,u)a. (3.16) 

Equation (3.15) represents a wave whose (negative) phase speed has been reduced in 
magnitude by the amount 

AC = c2y = 2-%,uuM2, (3.17) 

a second-order quantity. There will be a corresponding reduction in the group velocity 
cg. However, the replacement of cg by ci, say, in the expression f l  = e(x - cg t )  will bring 
about only a higher-order change in the differential equation (3.5) for A ,  so that to 
lowest order (3.5) is still valid. Hence, the solitary-wave solution of the modified 
equation indeed represents a steady, progressive wave to this order. 

The dispersion relation for this wave is found from (3.17). It is convenient to write 
this in terms of the maximum surface slope 

a,,, = Mk.  (3.18) 

- 

Thus in dimensionless units, since p = +, we find 

c = k 4 2 ( 1  -ga;ax). 

or to the same degree of approximation 

(3.19) 

c2 = q1-u 32 amax). 2 (3.20) 

This asymptote is represented by the dashed curve in figure 1. Since in our units the 
wave number is unity, we can also replace amax by a, the wave amplitude at the origin. 
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This is equivalent to the Bernoulli constant B. The corresponding asymptote is shown 
in figure 2. 

4. Discussion 
In the more accurate figure 2 it will be seen that the numerically determined values 

for solitary waves of finite amplitude approach quite well the asymptotic curve for 
envelope solitons of infinitesimal amplitude, at least for the waves of depression 
(B  > 0). For waves of elevation, on the other hand, the calculated points soon diverge 
much further from the asymptote. This we should expect, since the limiting form of the 
‘wave of elevation’ is nearly two limiting waves, each with a ‘bubble’, on either side 
of the origin. Each wave is nearly a solitary wave by itself, so that yo z y ,  and B is 
small. 

This insight shows why amax, which is monotonic, is potentially a more useful 
parameter than is A or B. However, the corresponding values of amax may not have 
been determined so accurately as the values of B. We note that the numerical method 
adopted in LH2 is less suitable for waves of elevation ( B  < 0) because of the slower 
convergence of the power series, but there seems no reason why the numerical method 
of VBD should not be used equally well. 

Meanwhile, there can be little doubt that the capillary-gravity solitary waves 
predicted in Longuet-Higgins (1988) and calculated numerically in LH2 and VBD are 
indeed special, steady, envelope solitons of finite amplitude. These solitons are 
analytically contiguous to linear capillary-gravity waves, having the minimum phase 
speed. 

A general conclusion to be drawn from the analysis of $ 3  is that in any dispersive 
medium which supports envelope solitons we may expect the existence of a family of 
steady solitary waves near a maximum or minimum of the phase speed, that is to say 
whenever the group velocity nearly equals the phase velocity. 

Very recently an analytic study of steady solitary waves of small amplitude in finite 
uniform depth of water has been made by Dias & Iooss (1993). They derive an analytic 
expression for the surface profile, correct to the third order in a small parameter. In the 
limiting case of infinite depth the analytic expressions become relatively tractable, and 
are discussed below in the Appendix. We show there that the amplitude-dispersion 
relation for their solution, though not derived explicitly by Dias & Iooss (1992) does 
in fact agree with the dispersion relation which we derived above in equation (3.20), to 
lowest order. It appears, however, that the higher-order terms given by Dias & Iooss 
can have at most only a very limited range of validity. 

I am indebted to Dr D. Henderson for correspondence and to Dr F. Dias for 
permission to refer to Dias & Iooss (1992) prior to publication. My work is supported 
by the Office of Naval Research under Contract NOOO14-91-5-1332. 

Appendix. Dias & Iooss (1993) 

the dimensionless parameters 
These authors investigate steady waves on water of finite depth h, characterized by 

h = gh/C2, b = T/phc2 (A 1) 

so that hb = gT/pc4 (A 2) 

independently of h. They choose units of length and time so that T l p  = 1, c = 1, so 
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in their system g = hb is a variable parameter. They expand the solution about the 
critical value of hb corresponding to the phase-speed minimum, which in deep water 
is h*b* = hb = a, as we have seen. Thus they write 

where m is a small parameter. 

hb = ++m, g = ++m, (A 3) 

In the deep-water limit their expression for the surface elevation p can be written as 

(A 4) 
- 16n COS$X 128n2 cosx 192n3sinhnxsin$X 
Y =---- +-7- 

11tcoshn~ 11 cosh2nx 1 1 ~  ncosh2nx ' 

where n = mf and the unit of length is (TI@). In the notation of this paper, where 
c2 s 2  this becomes, to lowest order in n, 

8n cosx 
1licosh2nx' 

y = -  

Hence we have, again to lowest order 

a,,, 1 sn/ 1 1;. 

We may take n to be positive for waves of depression, negative for waves of elevation. 
To obtain the amplitude-dispersion relation note that if we differentiate (A 2) 

logarithmically we have in general 

A(hb)/hb = Ag/g-4 Aclc. (A 7) 

Aclc = -iA(hb)/hb = -m, (A 8) 

hence Ac= - 2 / 2 n 2 .  (A 9) 

So in our system, in which Ag = 0, we have 

On eliminating n between (A 6)  and (A 9) we obtain the relation (3.19). 

the free-surface profile is given, to order n2, by 
Concerning the range of validity of the expansion (A 4), note that the curvature of 

This changes sign when n = 11$/32, that is when a,,, 20.25, according to (A 6).  In 
the computed profiles of VBD there is no indication of any such reversal of curvature. 
Thus it appears that the validity of (A 4) is limited to waves of slope small compared 
to 0.25. 
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